

Relazione tecnica di Progetto NIDO D'INFANZIA "L'ACQUERELLO" SCUOLA DELL'INFANZIA "ARCOBALENO"

Comune di Soragna
Via Vittorio Veneto, 3
43019 Soragna (PR)

Relazione tecnica del progetto di riqualificazione energetica

Il sottoscritto PIERGABRIELE ANDREOLI nato BOLOGNA il 14/06/1971, C.F. NDRPGB71H14A944L residente in BOLOGNA (BO) in Via CRACOVIA n. civ. 11 C.A.P. 40139 iscritto presso l'albo professionale degli INGEGNERI DELLA PROVINCIA DI BOLOGNA, con n. 5733/SEZIONE A, per incarico ricevuto da COMUNE DI SORAGNA, in qualità di tecnico abilitato che assume funzioni di persona esercente un servizio di pubblica necessità ai sensi degli artt. 359 e 481 del Codice Penale, consapevole delle responsabilità e delle pene stabilite dalla legge per false attestazioni e mendaci dichiarazioni (art. 76 D.P.R. 445/00), sotto la sua personale responsabilità

ASSEVERA

- che quanto dichiarato nella presente relazione, si basa su elementi, dati ed informazioni personalmente acquisite e verificate con diligenza tecnico-specialistica;
- che per la determinazione dell'Indice prestazionale sintetico (IPS) del progetto, sono state redatte relazioni di calcolo delle prestazioni energetiche del sistema edificio impianto, nello stato di fatto e di progetto, ai sensi delle norme richiamate in Allegato 1 (valutazione in uso standard) i cui risultati principali sono riportati nella presente relazione. Tali relazioni sono conservate presso gli uffici del soggetto richiedente e messe a disposizione della Regione in caso di verifiche e/o controlli.
- che gli interventi ed i suoi componenti sono stati correttamente dimensionati nel rispetto delle normative vigenti;
- che il progetto è conforme alle prescrizioni previste dal bando in oggetto;
- che il progetto riguarda un edificio come definito all'art. 2 del bando, dotato di impianto di climatizzazione invernale in uso (art. 4.2);
- che il progetto non riguarda edifici di nuova costruzione, secondo le prescrizioni dell'art. 4.4 del bando;
- che il progetto riguarda uno o più edifici di proprietà del soggetto richiedente o nella sua disponibilità secondo quanto previsto dall'art. 4.1 del bando;
- che per il rispetto delle condizioni di ammissibilità previste dall'art. 4.5 del bando il volume lordo riscaldato delle porzioni di edificio ad uso non ammesso è pari a 0 mc.

Modena lì, 28/01/2020

Il Tecnico

1. LOCALIZZAZIONE DELL'EDIFICIO

EDIFICIO 1)

Comune di SORAGNA, prov. PARMA, via VITTORIO VENETO numero civico 3 CAP 43019

Estremi catastali EDIFICIO 1

Foglio 26 Particella 264

2. STATO DI FATTO DELL'EDIFICIO

L'edificio in oggetto è il Nido d'Infanzia "L'Acquerello" e la Scuola dell'Infanzia "Arcobaleno" sita in via Vittorio Veneto 4, Soragna (PR).

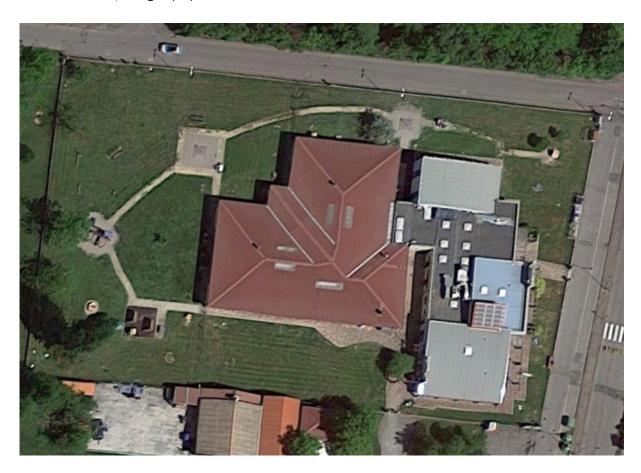


Figura 1 – Vista aerea

Si riportano di seguito alcune foto della struttura dell'involucro.

Figura 2 – Vista esterna

Figura 3 – Vista esterna

Analisi involucro edilizio

Si riportano di seguito le caratteristiche dell'involucro edilizio.

a) Anno di costruzione: 1970 e ampliamento 2008

b) Forma ed orientamento delle superfici: si sviluppa su pianta irregolare ad un piano fuori terra Nelle seguenti figure sono riportate le planimetrie dell'edificio.

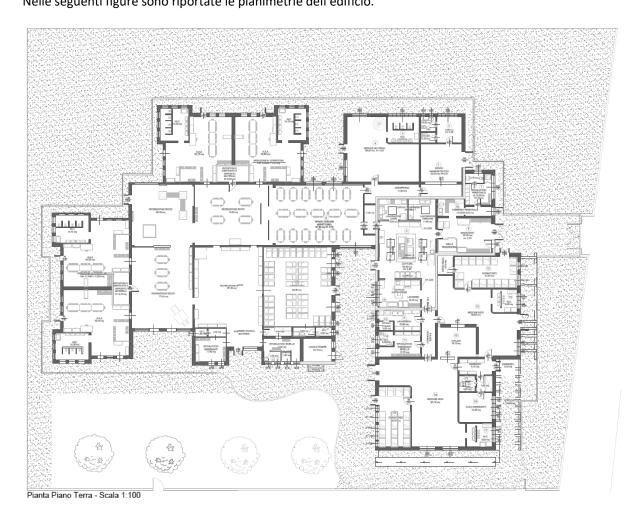


Figura 4 – PIANTA PIANO TERRA

Classificazione dell'edificio (o del complesso di edifici) in base alla categoria di cui all'articolo 3 del DPR 26 agosto 1993, n.412

Edificio adibito ad attività scolastiche E.7

Superficie utile riscaldata	1366,11 m ²
Superficie disperdente lorda	4214,25 m ²
Volume lordo riscaldato	5956,59 m ³
Rapporto S/V	0,707 m ⁻¹

[✓] L'edificio (o il complesso di edifici) rientra tra quelli di proprietà pubblica o adibiti ad uso pubblico ai sensi dell'Allegato 1 ed ai fini dell'articolo 5, comma 15, del DPR n. 412/93 e dell'articolo 5, comma 4, lettera c) della L.R n.26/04

Caratteristiche geometriche e termo fisiche dell'involucro

Si riportano i dati dei componenti opachi e trasparenti dell'involucro edilizio.

Partizione	Tipologia	Trasmittanza [W/m²K]
Parete - zona nuova	Laterocemento intonacato sulle due facce	0,638
Copertura - zona 2	Copertura piana	1,612
Copertura zona 1	Copertura piana	0,596
Basamento- zona nuova	Controterra calcestruzzo ordinario	0,733
200x200	Serramento in pvc vetrocamera	3,045
350x50	Serramento in pvc vetrocamera	3,174
50x50	Serramento in pvc vetrocamera	3,211
250x50	Serramento in pvc vetrocamera	3,185
120x210	Serramento in pvc vetrocamera	3,066
100x100	Serramento in pvc vetrocamera	3,031
100x250	Serramento in pvc vetrocamera	3,012
300x100	Serramento in pvc vetrocamera	3,070
200x250	Serramento in pvc vetrocamera	3,144
Parete - zona nuova	Laterocemento intonacato sulle due facce	0,638
Copertura zona 4	Copertura in lamiera grecata con pannello sandwich	0,596
Copertura - zona 3	Copertura piana	0,626
Basamento- zona nuova	Controterra calcestruzzo ordinario	0,733
120x210	Serramento pvc vetrocamera	3,066
100x250	Serramento pvc vetrocamera	3,012
200x250	Serramento pvc vetrocamera	3,144
120x250	Serramento pvc vetrocamera	3,100
95 tonda	Serramento pvc vetrocamera	2,867
138 tonda	Serramento pvc vetrocamera	2,889
100x200	Serramento pvc vetrocamera	3,159

60 tonda	Serramento pvc vetrocamera	2,845
128 tonda	Serramento pvc vetrocamera	2,884
85 tonda	Serramento pvc vetrocamera	2,861
105 tonda	Serramento pvc vetrocamera	1,761
Parete - zona vecchia	Laterocemento intonacato su due facce	1,031
Solaio sottotetto - zona vecchia	Laterocemento	2,022
Basamento- zona vecchia	Controterra calcestruzzo ordinario	5,825
200x200 VS	Serramento metallico con vetro singolo	5,838
70x210 VS	Serramento metallico con vetro singolo	5,832
80x190 VS	Serramento metallico con vetro singolo	5,865
80x60 VS	Serramento metallico con vetro singolo	5,832
300x210 VS	Serramento metallico con vetro singolo	5,828
80x210 VS	Serramento metallico con vetro singolo	5,821
400x100 VS	Serramento metallico con vetro singolo	5,822
175x210 VS	Serramento metallico con vetro singolo	5,851
120x210 VS	Serramento metallico con vetro singolo	1,761

Tabella 1

Sezione Impiantistica

In questo paragrafo vengono analizzati gli impianti termici presenti nell'edificio; se ne definiscono le principali caratteristiche tecniche.

Tipologia di caldaia	N° 2 Caldaie pensili con potenza termica utile di 65 kW
Posizione caldaia	Box esterno
Tipo di regolazione di zona	Sonda climatica
Fluido termo-vettore	Acqua
Distribuzione del vettore termico	Radiatori
Produzione acqua calda sanitaria	Combinata
Raffrescamento	Mono split
Ventilazione	Naturale
Impianto solare termico	Presente: N°4 pannelli
Impianto fotovoltaico	Presente: N°15 pannelli – 2,78 kWp

Tabella 2

3. DESCRIZIONE DEL PROGETTO

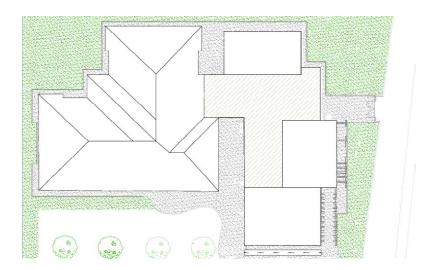
Si riportano di seguito gli interventi di efficientamento energetico.

Scenario 1 - COIBENTAZIONE STRUTTURE ORIZZONTALI

Su una qualsiasi superficie sulla quale sia necessario ridurre la conducibilità termica è possibile intervenire in tre modalità differenti per la disposizione del materiale isolante:

Isolamento dall'interno: si realizza ricoprendo le superfici con materiale isolante. Tale procedimento, oltre ad avere il vantaggio di essere facilmente realizzabile su edifici preesistenti, garantisce un tempo rapido nel riscaldamento interno a scapito di una riduzione della volumetria interna e di un potenziale aumento della condensa superficiale.

Isolamento nell'intercapedine: è al contrario una soluzione adottata solo in fase di costruzione e presenta generalmente vantaggi per il periodo estivo dove, con il passaggio dell'aria, riesce a migliorare lo smaltimento del calore all'interno verso l'esterno.


Isolamento dall'esterno (o isolamento a cappotto): si realizza ricoprendo la superficie esterna dell'involucro con uno strato di materiale isolante, sul quale successivamente verranno depositati intonaci e rifiniture esterne. Tra i vantaggi di questa soluzione, rientrano l'eliminazione dei ponti termici e la scomparsa di condense interne, garantendo l'omogeneità di temperatura tra le diverse stanze interne.

I materiali impiegati sono generalmente polistirene espanso, fibre di vetro o fibre naturali - quali sughero – e a seconda del materiale usato lo spessore da impiegare per ottenere un risultato vantaggioso dal punto di vista economico varia da un minimo di 4 cm fino a 10-15 cm (ma esistono limiti tecnici di spessore applicabile).

Altro materiale importante per isolamento termico è l'aria: nelle condizioni in cui non viene portata a creare moti convettivi, quest'ultima ha infatti una capacità isolante molto buona. Sfruttandone così la proprietà fisica, è consuetudine impiegare materiali isolanti solidi che presentino al loro interno una costituzione porosa. Al fine di avere una porosità capace di incrementare le prestazioni isolanti del materiale si ricorre all'uso dei cosiddetti isolanti espansi nei quali, mediante opportuni processi, vengono realizzate bolle d'aria o di gas inerti.

Intervento proposto

Si propone di coibentare la copertura piana verso l'estradosso mediante l'apposizione di un pannello dallo spessore di 12 cm in stifferite GTE con conducibilità termica pari a 0,023 W/mk, nella zona sotto rappresentata.

Si propone di coibentare il controsoffitto del solaio verso sottotetto mediante l'apposizione di un pannello dallo spessore 16 cm in lana di roccia Rockwool con conducibilità termica pari a 0,035 w/mK, nella zona sotto rappresentata

Struttura	Trasmittanza ANTE Operam (W/mqK)	Trasmittanza Post Operam (W/mqK)
Controsoffitto	2,022	0,180
Copertura piana	1,612	0,171

Scenario 2 – SOSTITUZIONE GENERATORE

Data la tipologia convenzionale dei generatori di calore ed il loro basso rendimento di produzione, le caldaie esistenti saranno sostituite con un generatore a condensazione, di potenza termica adeguata al fabbisogno dell'edificio.

La sostituzione del generatore prevederà tutte le operazioni necessarie al corretto smontaggio dei gruppi termici obsoleti, al montaggio delle nuove unità con il ripristino di tutti i collegamenti idraulici, elettrici e di alimentazione gas preesistenti, nonché al collaudo finale dell'impianto. I nuovi generatori a condensazione di migliore efficienza garantiranno un risparmio dato dal maggiore rendimento complessivo del sistema.

Intervento proposto

Si propone la sostituzione di uno dei due generatori pensili alloggiati in box esterno con un generatore a condensazione di pari potenza termica utile nominale (65 kW).

Impianti	Rendimento	а	pieno	carico	ANTE	Rendimento	а	pieno	carico	POST
	Operam (%)					Operam (%)				
Generatore di calore	89					98				

Scenario 3 – AMPLIAMENTO IMPIANTO FOTOVOLTAICO

Con la realizzazione dell'impianto si intende conseguire un significativo risparmio energetico per la struttura servita, mediante il ricorso alla fonte energetica rinnovabile rappresentata dal Sole. Il ricorso a tale tecnologia nasce dall'esigenza di coniugare:

- la compatibilità con esigenze architettoniche e di tutela ambientale;
- nessun inquinamento acustico;
- un risparmio di combustibile fossile;
- una produzione di energia elettrica senza emissioni di sostanze inquinanti.

Inoltre, l'impianto fotovoltaico consente la riduzione di emissioni in atmosfera delle sostanze che hanno effetto inquinante e di quelle che contribuiscono all'effetto serra.

Intervento proposto

L'impianto proposto sarà di tipo grid-connected, ed avrà le seguenti caratteristiche, determinate sulla base dei profili di assorbimento dell'edifico ed in generale del suo consumo elettrico:


Potenza impianto (kWp)	Autoconsumo (%)	Produzione Annua (kWh)	Autoconsumata (kWh)
15,3	100	19.005	19.005

Il presente impianto è stato dimensionato al fine di garantire un valore di autoconsumo pari ad almeno il 70% dell'energia prodotta.

Scenario 4 – INSTALLAZIONE OSCURANTI

Intervento proposto

Si propone l'installazione di oscuranti su pergolato esistente (lato nido) costituiti da tendaggi sintetici, nelle zone campite nell'immagine sotto. Si tratta di tende impermeabili con sistema di apertura e chiusura regolabile manualmente.

Struttura	Fattore di riduzione solare dovuto alle	Fattore di riduzione solare dovuto alle
	schermature solari ANTE Operam	schermature solari POST Operam
Oscuranti	0	0,8

4. PARAMETRI DIMENSIONALI E RISULTATI DI CALCOLO

1. Dati generali e dimensionali dell'edificio						
Definizione	U.M.	Stato di fatto	Stato di progetto			
Volume lordo climatizzazione invernale	m ³	5.956,59	5.956,59			
Volume lordo climatizzazione estiva	m ³	5.956,59	5.956,59			
Superficie utile totale calpestabile	m ²	1.366,11	1.366,11			
Superficie utile energetica climatizzazione invernale	m²	1.366,11	1.366,11			
Superficie utile energetica climatizzazione estiva	m ²	1.366,11	1.366,11			
Superficie disperdente	m ²	4.214,25	4.214,25			
Rapporto S/V	//	0,707	0,707			

2. Servizi energetici presenti						
	Stato di fatto)	Stato di prog	Stato di progetto		
Tipologia	Presenza	Efficienza media stagionale	Presenza	Efficienza media stagionale		
Climatizzazione invernale	X SI 🗆 NO	0,75	X SI □ NO	0,83		
Climatizzazione estiva	X SI □ NO	1,25	X SI □ NO	1,37		
Produzione acs	X SI □ NO	0,76	X SI □ NO	0,87		
Ventilazione meccanica	X SI □ NO		X SI □ NO			
Illuminazione artificiale	X SI □ NO		X SI □ NO			
Trasporto di persone o cose	□ SI X NO		□ SI X NO			

3. Prestazione energetica dell'edificio					
DEFINIZIONE	SIMBOLO	U.M.	Stato di fatto	Stato di progetto	
Indice di prestazione energetica per la climatizzazione invernale rinnovabile	EP _{H,ren}	kWh/m² anno	1,09	1,34	
Indice di prestazione energetica per la climatizzazione invernale non rinnovabile	EP _{H,nren}	kWh/m² anno	298,27	212,04	
Indice di prestazione energetica per la produzione acs rinnovabile	EP _{W,ren}	kWh/m² anno	4,62	4,69	
Indice di prestazione energetica per la produzione acs non rinnovabile	EP _{W,nren}	kWh/m² anno	12,87	11,24	
Indice di prestazione energetica per la ventilazione rinnovabile	EP _{V,ren}	kWh/m² anno	1,34	1,67	
Indice di prestazione energetica per la ventilazione non rinnovabile	EP _{V,nren}	kWh/m² anno	5,02	3,77	
Indice di prestazione energetica per la climatizzazione estiva rinnovabile	EP _{C,ren}	kWh/m² anno	3,05	3,47	
Indice di prestazione energetica per la climatizzazione estiva non rinnovabile	EP _{C,nren}	kWh/m² anno	12,30	11,97	
Indice di prestazione energetica per l'illuminazione artificiale rinnovabile	EP _{L,ren}	kWh/m² anno	13,06	18,55	
Indice di prestazione energetica per l'illuminazione artificiale non rinnovabile	EP _{L,nren}	kWh/m² anno	45,76	25,59	
Indice di prestazione energetica per il trasporto di persone o cose rinnovabile	EP _{T,ren}	kWh/m² anno	-	-	
Indice di prestazione energetica per il trasporto di persone o cose non rinnovabile	EP _{T,nren}	kWh/m² anno	-	-	
Le caratteristiche del sistema edificio/impianti sono tali da poter classificare l'edificio come edificio ad energia quasi zero	//	//	□ SI X NO	□ SI X NO	

4. Fabbisogni energetici dell'edificio

DEFINIZIONE	SIMBOL O	U.M.	Stato di fatto	Stato di progetto
Fabbisogno energetico annuale per soddisfare le esigenze legate ad un uso standard dell'edificio in termini di energia primaria totale per il riscaldamento, il raffrescamento, la ventilazione, la produzione di acqua calda sanitaria e, nel settore non residenziale, per l'illuminazione e per gli impianti di trasporto persone, calcolato mediante i metodi di calcolo di cui all'Allegato 1	Q_{gl}	kWh/anno	542.904	402.092
Fabbisogno energetico annuale per soddisfare le esigenze legate ad un uso standard dell'edificio in termini di energia primaria non rinnovabile per il riscaldamento, il raffrescamento, la ventilazione, la produzione di acqua calda sanitaria e, nel settore non residenziale, per l'illuminazione e per gli impianti di trasporto persone, calcolato mediante i metodi di calcolo di cui all'Allegato 1	$\mathbf{Q}_{gl,nren}$	kWh/anno	511.268	361.487
Fabbisogno energetico annuale per soddisfare le esigenze legate ad un uso standard dell'edificio in termini di energia primaria rinnovabile per il riscaldamento, il raffrescamento, la ventilazione, la produzione di acqua calda sanitaria e, nel settore non residenziale, per l'illuminazione e per gli impianti di trasporto persone, calcolato mediante i metodi di calcolo di cui all'Allegato 1	$Q_{gl,ren}$	kWh/anno	31.637	40.604

5. Fonti/Vettori energetici utilizzati

			Quantità <u>annı</u>	ua consumata in uso standard			
Fo	Fonte/Vettore		Stato	Stato	Costo unitario (euro/ U.M	Risparmio economico (euro)	
			di fatto	di progetto			
X	Energia elettrica da rete	kWhe	47.343	31.177	0,21	3.394,86	
Х	Gas naturale	Smc	42.159	30.259	0,54	6.426,00	
	GPL	kg					
	Carbone	kg					
	Gasolio e olio combustibile	kg					
	Biomasse solide	kg					
	Biomasse legna: u.r. 25%	kg					
	Biomasse solide pellets	kg					
X	Energia elettrica da solare fotovoltaico "on site"	kWhe	3.225	19.790	0,21	3.478,65	
Х	Energia termica da solare termico "on site"	kWht	6.161	6.161	-	0,00	
	Energia elettrica da minieolico "on site"	kWhe					
	Energia elettrica da minidroelettrico "on site"	kWhe					
	Teleriscaldamento	kWht					
	Teleraffrescamento	kWht					
	Energia aerotermica	kWht					
	Altro (specificare)	kWh					

6. Indici di prestazione energetica globali ed emissioni					
Stato di fatto	Stato di progetto				
Indice della prestazione energetica non rinnovabile	Indice della prestazione energetica non rinnovabile				
EPgl,nren	EPgl,nren				
kWh/m2	kWh/m2				
anno	anno				
374,25	264,61				
Indice della prestazione energetica rinnovabile	Indice della prestazione energetica rinnovabile				
EPgl,ren	EPgl,ren				
kWh/m2	kWh/m2				
anno	anno				
23,16	29,72				
Emissioni di CO ₂	Emissioni di CO ₂				
kg/m ²	kg/m²				
anno	anno				
76,29	53,86				

7. Produzione energia elettrica

Caratteristiche tecniche impianto	Stato di fatto		Stato di progetto			
Tipologia impianto (descrizione)	prodotta [kWhe/annol	Energia autoconsuma ta [kWhe/anno]	· •	Energia prodotta [kWhe/anno]	Energia autoconsumat a [kWhe/anno]	Energia esportata [kWhe/anno]
Impianto solare fotovoltaico	3.633	3.225	408	21.988	19.790	2.198

8. Produzione energia termica

Caratteristiche tecniche impianto	Stato di fatto		Stato di progetto			
	Energia prodotta [kWhe/anno]	Energia autoconsuma ta [kWhe/anno]	Energia esportata [kWhe/anno]	Energia prodotta [kWhe/anno]	Energia autoconsumat a [kWhe/anno]	Energia esportata [kWhe/anno]
Impianto solare termico	6.161	6.161	0	6.161	6.161	0

5. Modalità di finanziamento, esecuzione e gestione

Il presente progetto di fattibilità tecnica ed economica verrà sostenuto dal comune tramite spese proprie.

6. Piano dei costi del progetto

Si riporta tabella dei costi ammissibili sia IVA inclusa che IVA esclusa.

Piano dei costi ammissibili del progetto						
Tipologie di costo ammissibili	Importo richiesto	Importo richiesto				
articolo 6.1 lettere a), b)	(euro, IVA escl)	(euro, IVA incl)				
a) progettazione, direzione lavori, coordinamento sicurezza in fase di progettazione ed esecuzione, collaudo e certificazione degli impianti, redazione di diagnosi energetiche, redazione attestati di prestazione energetica (max 20% di b)	20.036,06	24.444,00				
b) fornitura, installazione e posa in opera di materiali e componenti necessari alla realizzazione degli impianti e delle opere ammesse a contributo, ivi inclusi opere edili strettamente necessarie ed oneri di sicurezza	100.180,31	110.198,34				
IMPORTO COMPLESSIVO RICHIESTO	120.216,37	134.642,34				